Структурно-механические свойства пищевых продуктов. Структурно-механические свойства бродящего теста Характеристика структурно механические свойства мучного теста

Оценка хлебопекарных свойств пшеничной муки. (1 часть)

Применяемый термин «сила» муки фактически является синонимом качества муки, ее физических свойств. Сильной считают муку, способную при замесе поглощать относительно большее количество воды и образовывать при этом тесто, устойчиво сохраняющее форму, не липнущее к рукам и машинам, не расплывающееся при разделке и выпечке. Из хорогшей пшеничной муки получается ароматный, вкусный, пышный хле(б правильной формы, покрытый гладкой блестящей зарумяненной коркой, с эластичным равномерно разрыхленным мелкопористым мякишем. Прогнозирование и обеспечение высокого качества хлеба возможны лишь при учете хлебопекарных достоинств муки, которые зависят от белко-допротеиназного и углеводно-амилазного комплексов муки. Под термином «белково-протеиназный комплекс» подразумевают белки муки (главным образом глиади:н и глютенин), протеолитические ферменты, гидролизующие их, а также активаторы и ингибиторы протеолиза. В понятие «углеводно-амилазный комплекс» включены сахар, крахмал и амилазы, гидролизующие его.

Белково-протеиназный комплекс. Белково-протеиназный комплекс, и прежде всего клейковина, является основным фактором, обусловливающим силу муки. Клейковина пшеничной муки представляет собой сильно гидратированный комплекс, состоящий в основном из белков глиадина и глютенина. Их соотношение, по данным В. С. Смирнова, в клейковине из муки высшего сорта находится в пределах от 1: 1,6 до 1:1,8. С увеличением выхода муки оно снижается и в клейковине из муки 2-го сорта составляет от 1:1,1 до 1:1,2. Оба эти белка гетерогенны, каждый состоит из нескольких фракций.

Глиадин имеет молекулярную массу от 27000 до 65000. Набухая в воде, он образует относительно жидкую сиропообразную массу, которая характеризуется липкой, вязкотекучей, сильно растяжимой и не упругой консистенцией.

Глютенина молекулы более крупные, их молекулярная масса составляет от сотни тысяч до нескольких миллионов. Гидратиро-ванный глютенин образует резиноподобную, короткорастяжимую массу с большим сопротивлением деформации, упругую и относительно жесткую.

Сырая клейковина сочетает в себе структурно-механические свойства этих белков и занимает как бы промежуточное положение: глютенин является основой, а глиадин - ее склеивающим началом.

В сырой клейковине доля воды составляет 64-70 %. Кроме воды, белки прочно удерживают небольшое количество крахмала, сахара, липидов, минеральных элементов. В клейковине небелковые вещества составляют (в % на сухое вещество): из муки высшего сорта-8-10; 1-го- 10-12; 2-го-16-22. Установлено, что липиды, углеводы и минеральные элементы находятся в клейковине в химически связанном состоянии - в виде лило- и гликопротеидов, а крахмал и оболочечные частицы удерживаются механически. Входящие в состав клейковины липиды оказывают влияние на ее свойства. Их действие объясняется тем, что ненасыщенные жирные кислоты, окисляясь и образуя перекиси и гидроперекиси, способствуют окислению сульфгидрильных групп - SH с образованием дисульфидных связей - S - S -, которые упрочняют внутримолекулярную структуру белка, делая ее более плотной. Дисульфидные связи образуются как внутри одной молекулы белка, так и между разными молекулами клейко-винных белков. Определенная часть липидов остается не связанной с белками и служит как бы смазкой между белковыми молекулами, придавая клейковине дополнительную эластичность.

Свойства клейковины и методы их определения регламентированы стандартом, которым нормируется количество клейковины. Содержание сырой клейковины должно быть (в % к массе муки, не менее): в крупчатке - 30, высшем сорте - 28, 1-м - 30, 2-м - 25, обойной - 20.

Качество клейковины характеризуется в основном органо-лептически по цвету и запаху, а также упругости, эластичности и растяжимости. У клейковины хорошего качества цвет белый с желтоватым или сероватым оттенком и слабый приятный мучной запах. Клейковина пониженного качества имеет серый цвет, иногда с коричневатым оттенком, и посторонний неприятный запах.

Клейковина хорошего качества упругая, связная, после деформации быстро восстанавливает первоначальную форму, к рукам не липнет. Плохая клейковина не упруга, прилипает к пальцам, консистенция у нее мажущаяся, иногда губчатая или крошливая.

Клейковина считается крепкой, если кусочек в 4 г растягивается менее чем на 10 см, средней растяжимости - от 11 до 16 и слабой - более чем на 16 см.

Стандартом клейковину делят на три группы по указанным выше показателям: I - хорошая упругость, длинная или средняя растяжимость; II - хорошая упругость и короткая растяжимость или удовлетворительная упругость, короткая, средняя или длинная растяжимость; III - слабая упругость, сильно тянущаяся, провисающая при растягивании, разрывающаяся на весу под собственной тяжестью, а также неупругая, плывущая, несвязная.

О качестве клейковины достаточно объективно может свидетельствовать еегидратационная способность. По данным Г. Н. Прониной, она колеблется (в % к сырой клейковине): у муки высшего сорта - от 175 до 188, 1-го - от 172 до 197 и 2-го - от 166 до 186.

Определение сухой клейковины (в % к массе муки на сухое вещество) позволяет исключить влияние колебаний влажности муки и гидратационной способности клейковины, поэтому характеризует муку более объективно и теснее коррелирует с содержанием белка. Содержание сухой клейковины (в %): в муке высшего сорта - 9,4-10,ЗГ 1-го - 10,2-12,7; 2-го - 8,7-11,7.

Выпечка шарика из 2 г клейковины позволяет в определенной степени прогнозировать объемный выход хлеба. Шарик из клейковины хорошего качества имеет объем 4,5-5,5 см 3 , а отношение его высоты к диаметру равно 1,1 -1,2.

Расплываемость шарика из 10 г сырой клейковины, определяемая при температуре 30 °С, за один, два и три часа расстойки достаточно объективно отражает качество и косвенно свидетельствует об активности протеолитических ферментов. Диаметр шариков (полусумма двух перпендикулярных замеров) клейковины среднего качества примерно равен (в мм): в начале определения - около 30; через 1 ч - от 40 до 50; через 2 ч - от 50 до 55; через 3 ч - от 55 до бО.

Характеристика качества клейковины может быть проведена с помощью приборов, наиболее распространенным является измеритель деформации клейковины ИДК-1, в котором на шарик клейковины массой 4 г в течение 30 с действует сила Р = 1,18 Н. Чем глубже пуансон прибора погружается в клейковину, тем она слабее. И. М. Ройтер приводит следующую градацию качества клейковины (Н деф - критерии качества в единицах прибора): сильная - 60-70, средняя - 71-80, удовлетворительная - 81 -100, слабая - более 100. Если результат, полученный на ИДК-1, умножить на 0,2, то получают растяжимость клейковины в сантиметрах.

Таким образом, изучение качества клейковины стандартными и дополнительными методами позволяет достаточно объективно и разносторонне характеризовать ее свойства. Однако на процесс отмывания клейковины влияет множество факторов, в том числе температура и жесткость воды, длительность отмывания, количество израсходованной при этом воды и др. Кроме того, клейко-винные белки выделены из природной среды, и поэтому их свойства не полностью совпадают с поведением их в тесте. Поэтому, хотя изучать клейковину несколько быстрее и проще, но определение силы муки по свойствам теста дает более надежные результаты.

Протеолитические ферменты являются вторым компонентом белково-протеиназного комплекса; в здоровом зерне пшеницы они имеют сравнительно невысокую активность. Однако в дефектном зерне и муке из него она резко возрастает. Протеазы, воздействуя на клейковину, снижают ее упругость, увеличивают текучесть. Протеолиз не всегда сопровождается образованием свободных аминокислот, т. е. разрушением первичной структуры белка. В начальной стадии протеолиз воздействует на третичную и четвертичную структуры белковой молекулы, вызывая ее дезагрегацию, образование полипептидов.

Ингибируют (замедляют) протеолиз окислители, способные окислять сульфгидрильные группы до дисульфидных.

Активаторами протеолиза являются восстановители, разрушающие дисульфидные мостики между молекулами белка и тем самым ослабляющие клейковину. В муке и дрожжах, особенно старых, присутствует трипептид глютатион, обладающий сильным восстановительным действием. Таким же свойством обладает аминокислота цистеин. Специальные исследования активности протеолитических ферментов при оценке муки не производят. Об их деятельности судят по качеству клейковины и структурно-механическим свойствам теста.

Характеристика «силы» муки по структурно-механическим (реологическим) свойствам теста. Тесто является оводненным коллоидным комплексом - полидисперсоидом. Оно обладает определенной внутренней структурой и своеобразными непрерывно изменяющимися структурно-механическими свойствами. Методы, позволяющие дать их характеристику, одновременно характеризуют «силу» муки.

Определение «силы» муки по расплываемости шарика бездрожжевого теста предложено проф. Л. Я- Ауэрманом. По этому методу замешивают тесто с влажностью 46,3 %; 100 г теста закатывают в шарик и выдерживают один, два и три часа, учитывая не только свойства клейковины, но и суммарное влияние белковых веществ, протеолитических ферментов и некрахмальных полисахаридов на реологические свойства теста. За 3 ч отлежки диаметр шарика теста из сильной муки увеличивается не более чем до 83 мм, средней - до 97, слабой - более 97 мм.

Определение, «силы» муки по консистенции теста проводят консистометром (пенетрометром). При этом исследуют структурно-механические свойства теста, по которым судят об активности протеолитических ферментов, вызывающих дезагрегацию клейковины и снижение ее упругости. Для испытания замешивают тесто постоянной для каждого сорта муки влажности. Выдерживают его в термостате при температуре 35 °С в течение 60, 120 и 180 мин (Ко, Keo, Кi20 и Kieo) и определяют глубину продавлива-ния теста пуансоном под действием силы Р = 50 г (0,49 Н). Чем глубже пуансон погружается в тесто, тем слабее мука и тем больше значение К в условных единицах прибора. Так, в муке 1-го сорта хорошего качества Ко не превышает 100, Кбо - до 120, Ki20 -до 150 и Kieo - до 180.

ОСОБЕННОСТИ СТРУКТУРЫ И МЕХАНИЧЕСКИХ СВОЙСТВ БРОДЯЩЕГО ТЕСТА

Небродящее мучное тесто следует считать материалом, при­званным оценивать технологические свойства зерна и муки. Бро­дящее тесто для указанной цели менее пригодно, так как содер­жит дрожжи, закваски, газообразные вещества, преимуществен­но углекислоту, органические кислоты, образующиеся при бро­жении. Оно является структурным аналогом и предшественни­ком структуры хлебного мякиша, незафиксированной термиче­ской обработкой. Количество образующейся в единице объема теста углекислоты зависит от содержания и распределения в нем дрожжевых клеток, энергии их брожения, определяемой массой дрожжей, условиями их жизнедеятельности. Величина пузырьков углекислоты и их количество в объеме определяются газопроницаемостью теста (по С0 2), зависящей от его структур­но-механических свойств.

Газообразные вещества, как известно, существенно отличают­ся от твердых тел и жидкостей меньшей плотностью, большей сжимаемостью, а также зависимостью коэффициента их объем­ного расширения от температуры. Их наличие в структуре теста увеличивает объем, понижает его плотность, усложняет структу­ру. Упруго-пластичные деформации бродящего теста протекают в стенках пор его структурированной массы. Для того чтобы рас­смотреть влияние газообразной фазы на механические свойства бродящего теста, рассмотрим схему его структуры, приведенной на рис. 21. В ней палочками с круглым концом схематически по­казаны ПАВ, белки, липоиды и др. Их закругленная часть пред­ставляет полярную, а прямой «хвост» - неполярную группу ато­мов в молекуле.

Наиболее вероятными центрами образования первичных пу­зырьков С0 2 в бродящем тесте являются точки сцепления непо­лярных групп молекул ПАВ, связанных наиболее слабыми си­лами дисперсионных взаимодействий. Образующиеся в тесте при его брожении газообразные продукты (СО 2 и др.) растворяются в свободной воде, адсорбируются на поверхностях молекул гид­рофильных полимеров. Их избыток образует пузырьки газа в бродящем тесте. Стенки пузырьков образуют поверхностно- активные вещества. Увеличение количества газообразных про­дуктов вызывает соответствующее увеличение числа и объема газовых пузырьков, уменьшение толщины их стенок, а также прорыв стенок, диффузию и утечку газа с поверхности теста.

Этот сложный процесс образования структуры бродящего те­ста, естественно, сопровождается увеличением объема его массы и деформациями сдвига. Накопление множества пузырьков га­зообразных продуктов приводит к образованию пенообразной структуры бродящего теста, имеющей двойные стенки, образо­ванные поверхностно-активными веществами. Они заполнены массой гидратированных гидрофильных веществ теста, связан­ных с полярными группами ПАВ стенок пузырьков вторичными химическими связями. Тесто обладает значительной вязкостью и упруго-эластичными свойствами, обеспечивающими его пенооб­разной структуре достаточную прочность и долговечность, опре­деленную способность течения и удерживания газообразных ве­ществ (воздуха, пара, углекислоты).

Упруго-пластичные деформации сдвига такой структуры в результате перманентного увеличения объема газовых пузырьков и теста приводят к уменьшению толщины стенок, их разрыву и слиянию (коалесценции) отдельных пузьцрьков с уменьшением общего объема.

Развитие упруго-пластичных деформаций сдвига в массе на­чинающего быстро бродить теста, понижающего свою плотность, происходит при соответствующих пониженных напряжениях, по­этому начальные модули упругости-эластичности сдвига и вяз­кость такого теста должна быть не выше, чем у небродящего те­ста. Однако в процессе его брожения и увеличения объема де­формации сферических стенок его газовых пор должны сопро­вождаться ориентацией белков и других полимеров в направлении сдвига и течения, образованием дополнительных межмолекулярных связей между ними и увеличением вязкости теста. Понижение плотности бродящего теста при брожении по­зволяет белкам полнее реализовать эластичные свойства - пони­зить модуль упругости-эластичности сдвига. При увеличенной вязкости, сниженном модуле бродящее тесто должно иметь значительно большее отношение этих характеристик, иметь бо­лее твердообразную систему, чем небродящее.

Благодаря перманентному образованию углекислоты и уве­личению таким путем объема бродящее тесто в отличие от не- бродящего является двояко напряженной системой. Силы грави­тации его массы при брожении уступают, равны или больше энергии химических реакций образования С0 2 , создающей силы, развивающие и движущие газовые пузырьки вверх по закону Стокса (движения сферических тел в вязкой среде). Количество и размеры пузырьков газа в тесте определяются энергией и ско­ростью брожения дрожжей, структурно-механическими свой­ствами теста, его газопроницаемостью.

Величина образующегося при брожении пузырька углекисло­го газа в каждый данный момент будет зависеть от равновесия его растягивающих сил

Р=π rp (4.1)

и сжимающих

P =2π (4.2)

где π, r , р , σ - соответственно отношение окружности к диаметру (3, 14), ра­диус пузырька, избыточное давление и поверхностное натяже­ние.

Из условий равенства уравнений (4.1) и (4.2) следует, что

P =2 σ / r (4.3)

Уравнение (4.3) показывает, что в начальный момент образо­вания газового пузырька, когда его размеры, определяемые ра­диусом, весьма малы, величина избыточного давления должна быть значительна. С увеличением радиуса пузырьков оно сни­жается. Соседство пузырьков газа различного радиуса должно сопровождаться диффузией СО 2 через стенки в направлении от большего к меньшему давлению и выравниванием его. При нали­чии определенного избыточного давления и среднего размера газовых пузырьков нетрудно подсчитать, зная вязкость теста, скорость их подъема по упомянутому закону Стокса.

Согласно этому закону сила, поднимающая пузырьки газа,

P =4/3π rg ( ρ - ρ ) (4.4)

преодолевает силу их трения

P =6 πrηυ (4.5)

где g-константа гравитации;

и ρ - плотности газа и теста;

η-эффективная структурная вязкость теста;

υ- скорость вертикального движения пузырьков газа в тесте

возникающую в массе теста при движении в нем сферического тела (пузырька газа).

Из равенства уравнения (4.4) и (4.5) легко определяется ве­личина скорости

V =2 gr ( ρ - ρ )/9 η (4 .6)

Данное уравнение имеет большое практическое значение, по­зволяя установить зависимость скорости увеличения объема бро­дящего теста от его плотности и вязкости, размера отдельных пор, определяемого также энергией брожения микроорганизмов. Подсчитанная по уравнению скорость увеличения объема пше­ничного теста из муки I сорта плотностью 1,2 со средним радиу­сом пор 1 мм и вязкостью порядка 1

10 4 Пас составляет около 10 мм/мин. Практические наблюдения показывают, что такое те­сто имеет среднюю скорость подъема от 2 до 7 мм/мин. Наиболь­шая скорость наблюдается в первые часы брожения.

При наличии в тесте соседних пор, имеющих различные раз­меры и давление газа, происходят разрыв их стенок и слияние пор (коалесценция); это явление также зависит от скорости бро­жения и механических свойств теста; по-видимому, большинство пор теста и хлебного мякиша являются незамкнутыми, открыты­ми. Вследствие явлений диффузии С0 2 через стенки пор и их разрыва избыточным давлением бродящее тесто теряет углекис­лоту своей поверхностью: принимая затрату сухих веществ (са­хара) на брожение теста, равным в среднем 3% массы муки, при спиртовом брожении на 1 кг муки (или 1,5 кг хлеба) выделяет­ся около 15 г, или примерно 7,5 л С0 2 . Это количество при атмосферном давлении в несколько раз превышает объем газо­образных продуктов в указанном объеме хлеба и характеризует их потери при брожении теста.

В бродящем тесте образуются также многие другие органи­ческие кислоты и спирты, способные изменять растворимость соединений зерна. Таким образом, все изложенное выше пока­зывает, что структура бродящего теста является более сложной, чем у небродящего. Оно должно отличаться от последнего мень­шими: плотностью, модулем упругости-эластичности, большей вязкостью и η/Е (большей способностью сохранения формы), перманентным увеличением объема и кислотности при брожении.

Уплотненное макаронное тесто, поступающее к матрице, является упруго-пластичновязким материалом.

Упругость теста - это способность теста восстанавливать первоначальную форму после быстрого снятия нагрузки, проявляется при малых и кратковременных нагрузках.

Пластичность - это способность теста деформироваться. При длительных и значительных по величине нагрузках (выше так называемого предела упругости) макаронное тесто ведет себя как пластичный материал, т.е. после снятия нагрузки сохраняет приданную ему форму, деформируется. Именно это свойство позволяет формовать из теста сырые макаронные изделия определенного вида.

Вязкость - характеризуется величиной сил сцепления частиц между собой (сил когезии). Чем больше величина сил когезии теста, тем оно более вязкое (прочное), менее пластичное.

Пластичное тесто требует меньше энергии на формование, легче поддается формованию. При использовании металлических матриц из более пластичного теста получаются изделия с более гладкой поверхностью. С повышением пластичности тесто становится менее упругим, менее прочным, более липким, сильнее прилипает к рабочим поверхностям шнековой камеры и шнека, а сырые изделия из такого теста сильнее слипаются между собой, плохо сохраняют форму.

Реологические свойства уплотненного теста, т.е. соотношение его упругих, пластических и прочностных свойств, определяются следующими факторами.

С увеличением влажности теста увеличивается его пластичность и уменьшаются прочность и упругость.

С ростом температуры теста также наблюдается увеличение его пластичности и снижение прочности и упругости. Такая зависимость наблюдается и при температуре большей 62,5 °С, т.е. превышающей температуру клейстеризации пшеничного крахмала. Это объясняется тем, что макаронное тесто имеет недостаточное количество влаги, необходимой для полной клейстеризации крахмала при указанной температуре.

С увеличением содержания клейковины уменьшаются прочностные свойства теста и возрастает его пластичность. Наибольшей вязкостью (прочностью) тесто обладает при содержании в муке около 25 % сырой клейковины. При содержании сырой клейковины ниже 25 % с уменьшением пластических свойств теста уменьшается и его прочность. Липкая, сильно тянущаяся сырая клейковина увеличивает пластичность теста и значительно снижает его упругость и прочность.

С уменьшением размера частиц муки увеличивается прочность и уменьшается пластичность теста из нее: тесто из хлебопекарной муки более прочное, чем из полукрупки, а из полукрупки более прочное, чем из крупки. Оптимальное соотношение прочностных и пластических свойств характерно для частиц исходной муки размером от 250 до 350 мкм.

Структурно-механические, или реологические, свойства пищевых продуктов характеризуют их сопротивляемость воздействию внешней энергии, обусловленную строением и структурой продукта, а также качество пищевых продуктов и учитываются при выборе условий их перевозки и хранения.

К структурно-механическим свойствам относят прочность, твердость, упругость, эластичность, пластичность, вязкость, адгезию, тиксотропию и др.

Прочность - свойство продукта противостоять деформации и механическому разрушению.

Под деформацией понимают изменение формы и размера тела под действием внешних сил. Деформация бывает обратимой и остаточной. При обратимой деформации происходит восстановление первоначальной формы тела после снятия нагрузки. Обратимая деформация может быть упругой, когда происходит моментальное восстановление формы и размера тела, и эластичной, когда на восстановление требуется более или менее продолжительный отрезок времени. Остаточной (пластической) называется деформация, остающаяся после прекращения действия внешних сил.

Пищевые продукты, как правило, характеризуются многокомпонентностью состава; им свойственна как упругая деформация, исчезающая мгновенно, так и эластичная, а также пластическая деформация. Однако у одних преобладают упругие свойства над пластическими, у других - пластические над упругими, а у третьих преобладающими являются эластичные свойства. Если пищевые продукты не способны к остаточным деформациям, то они хрупки, например сахар-рафинад, сушки, сухари и т.д.

Прочность - один из важнейших показателей качества макаронных изделий, сахара-рафинада и других продуктов.

Этот показатель учитывается при переработке зерна на муку, при дроблении винограда (при производстве виноградных вин), при измельчении картофеля (при выработке крахмала) и т.д.

Твердость - способность материала сопротивляться внедрению в него другого более твердого тела. Твердость определяют при оценке качества плодов, овощей, сахара, зерна и других продуктов. Этот показатель играет важную роль при сборе, сортировке, упаковке, транспортировании, хранении и переработке плодов и овощей. Кроме того, твердость может быть объективным показателем степени их зрелости.

Твердость определяют вдавливанием в поверхность продукта твердого наконечника, имеющего форму шарика, конуса или пирамиды. По диаметру образующейся лунки судят о твердости продукта: чем меньше размер лунки, тем тверже продукт. Твердость плодов и овощей определяют по величине нагрузки, которую нужно приложить, чтобы игла или шарик определенных размеров вошли в мякоть плода.

Упругость - способность тел мгновенно восстанавливать свою первоначальную форму или объем после прекращения действия деформирующих сил.

Эластичность - свойство тел постепенно восстанавливать форму или объем в течение некоторого времени.

Показатели упругости и эластичности используют при определении качества теста, клейковины пшеничной муки, свежести мясных, рыбных и других изделий. Они учитываются при изготовлении тары, при определении условий перевоз­ки и хранения пищевых продуктов.

Пластичность - способность тела необратимо деформироваться под действием внешних сил. Свойство сырья изменять свою форму при переработке и сохранять ее в дальнейшем используется при производстве таких пищевых продуктов, как печенье, мармелад, карамель и др.

В результате длительного внешнего воздействия упругая деформация может переходить в пластическую. Этот переход связан с релаксацией - свойством материалов изменять напряжение при постоянной начальной деформации. На релаксации основано изготовление некоторых пищевых продуктов, например колбасных изделий. Из мяса, характеризующегося упругой деформацией, готовят фарш, а из него колбасу, обладающую свойствами пластического материала. Определенные величины релаксации характерны только для продуктов твердожидкой структуры - сыра, творога, фарша и др. Это свойство пищевых продуктов учитывается при перевозке и хранении хлебобулочных изделий, плодов, овощей и др.

Вязкость - способность жидкости оказывать сопротивление перемещению одной ее части относительно другой под действием внешней силы.

Различают вязкость динамическую и кинематическую.

Динамическая вязкость характеризует силу внутреннего трения среды, которую необходимо преодолеть для перемещения единицы поверхности одного слоя относительно другого при градиенте скорости смещения, равном единице. За единицу динамической вязкости принята вязкость такой среды, у которой один слой при действии силы, равной 1 Ньютону на квадратный метр, перемещается со скоростью 1 м/с относительно другого слоя, находящегося на расстоянии 1 м. Измеряется динамическая вязкость в Н-с/м 2 .Кинематической вязкостью называется величина, равная отношению динамической вязкости к плотности среды, и выражается В М 2 /С.

Величина, обратная вязкости, называется текучестью.

На вязкость продуктов влияют температура, давление, влажность или жирность, концентрация сухих веществ и другие факторы. Вязкость пищевых продуктов уменьшается при повышении "влажности, температуры, жирности и возрастает с увеличением концентрации растворов, степени их дисперсности.

Вязкость - свойство, характерное для таких пищевых продуктов, как мед, растительное масло, сиропы, соки, спиртные напитки и др.

Вязкость является показателем качества многих пищевых продуктов и часто характеризует степень их готовности при переработке сырья. Она играет важную роль при производстве многих продуктов, так как активно влияет на технологические процессы - перемешивание, фильтрование, нагревание, экстрагирование и др.

Ползучесть - свойство материала непрерывно деформироваться под воздействием постоянной нагрузки. Это свойство характерно для сыров, мороженого, коровьего масла, мармелада и др. В пищевых продуктах ползучесть проявляется очень быстро, с чем приходится считаться при их обработке и хранении.

Тиксотропия - способность некоторых дисперсных систем самопроизвольно восстанавливать структуру, разрушенную механическим воздействием. Она свойственна дисперсным системам и обнаружена у многих полуфабрикатов и продуктов пищевой промышленности.

Особое место среди структурно-механических свойств занимают поверхностные свойства, к которым относят адгезию, или липкость.

Адгезия характеризует усилие взаимодействия между поверхностями продукта и материала или тары, с которыми он соприкасается. Этот показатель тесно связан с пластичностью, вязкостью пищевых продуктов. Различают два вида адгезии: специфическую (собственно адгезия) и механическую. Первая является результатом сил сцепления между поверхностями материала. Вторая возникает при проникновении адгезива в поры материала и удержании его вследствие механического заклинивания.

Адгезия характерна для таких пищевых продуктов, как сыр, сливочное масло, мясной фарш, некоторые кондитерские изделия и др. Они прилипают к лезвию ножа при разрезании, к зубам при разжевывании.

Излишняя адгезия усложняет технологический процесс, при этом повышаются потери при переработке продукта. Это свойство пищевых продуктов учитывается при выборе способа их переработки, упаковочного материала и условий хранения.

1

Обосновано количество введения соевой муки в рецептуру песочного теста. Применение соевой муки повышает пригодность теста к машинной обработке, в частности к точному дозированию штучных изделий. Присутствие жира в соевой муке имеет большое значение для текстуры и мягкости песочных изделий, а белки способствуют вовлечению воздуха и образованию мелкой пористости теста. На основании органолептических показателей песочных кексов с различным содержанием соевой муки выявлен наилучший образец, содержащий 5 % вносимой добавки от общего количества пшеничной муки, идущей по рецептуре. Показано влияние количества вносимой в рецептуру соевой муки на реологические свойства песочного теста. Введение 5 %-го количества соевой муки незначительно увеличивает жесткость песочного теста, что положительно влияет на формоустойчивость песочных кексов с фруктово-ягодными начинками и не ухудшает органолептические показатели готовых изделий.

мука соевая

тесто песочное

органолептическая оценка

реология

1. Корячкин В.П., Корячкина С.Я., Румянцева В.В. Разработка технологий производства мучных кондитерских изделий из песочного теста на ржаной муке с учетом реологических свойств полуфабрикатов // Успехи современного естествознания. – 2006. – № 7 – С. 68–74.

2. Кузнецова Л.С., Сиданова М.Б. Технология приготовления мучных кондитерских изделий. – М.: Мастерство. 2002. – 320 с.

3. Перетятко Т.И. Мучные кондитерские изделия. – Ростов-н/Д.: Феникс, 2005. – 384 с.

Изделия из песочного теста относятся к наиболее распространенным видам мучной кондитерской продукции, удельный вес рецептур которых составляет порядка 17 % .

Однако количество рецептур производимых полуфабрикатов, на которых базируется все многообразие ассортимента изделий из песочного теста, согласно действующей нормативно-технической документации ограниченно и может удовлетворить только потребителей с консервативными вкусами, без учета физиологических особенностей, национальных традиций населения, а также региональных условий производства.

С целью совершенствования ассортимента и разработки новых рецептур мучных кондитерских изделий из песочного теста, а также приданию им дополнительных вкусовых характеристик проведено изучение влияния соевой муки на реологические свойства песочных кексов с фруктово-ягодной начинкой.

Химический состав соевой муки считается главной отличительной особенностью продукта. В ее состав входит большое количество белков, а также витаминов группы А, В и Е. Кроме того, соевая мука обогащена калием, фосфором, а также магнием и кальцием. Поэтому соевую муку используют в пищевой промышленности как витаминную пищевую добавку природного происхождения. Мука соевая обладает повышенной эмульгирующей способностью, что позволяет готовить термически стабильные эмульсии и применять соевую муку как функциональную добавку в кондитерской и хлебопекарной промышленности для снижения рецептурных норм закладки сухого молока, яиц, животных жиров, для длительного сохранения свежести готовых изделий, а также улучшения их цвета. Применение такой муки повышает пригодность теста к машинной обработке, в частности к точному дозированию штучных изделий. Присутствие жира в соевой муке имеет большое значение для текстуры и мягкости песочных изделий, а белки способствуют вовлечению воздуха и образованию мелкой пористости. Это объясняет технологичность использования соевой муки в песочном тесте .

Цель исследования

Целью данного исследования является улучшение структурных свойств песочного теста и обогащение песочных изделий белком, пищевыми волокнами, витаминами и минералами, которые содержаться в соевой муке.

Предметом исследования стали песочные кексы с фруктово-ягодной начинкой с заменой части пшеничной муки на полуобезжиренную дезодорированную соевую муку. Кексы представляют собой закрытую корзиночку, внутри которой находится фруктово-ягодная начинка.

Результаты исследования и их обсуждение

Для песочного теста используют муку с пониженным содержанием клейковины, чтобы выпеченные изделия были более пористые и рассыпчатые. Для данной категории кексов нужна незначительная жесткость песочной корзиночке и крышке, чтобы фруктовая начинка не вытекала при выпечке и при хранении изделия лучше сохраняли форму.

В связи с тем, что завышенное содержание соевой муки в песочном тесте сказывается отрицательно на органолептические показатели песочных изделий, была предпринята попытка добавления в песочное тесто соевой муки в количестве 5, 8, 12 % от общего содержания пшеничной муки с целью улучшения пластично-вязких свойств песочного теста для данной категории кексов.

В результате органолептической оценки модельных образцов было выявлено, что наилучшие органолептические показатели имели изделия, содержащие 5 % соевой муки. Выпеченные изделия имели отлично пропеченную, тонкостенную структуру с хорошей хрупкостью, с равномерной пористостью, равномерный золотистый цвет, очень приятный, ясно выраженный вкус. Песочная корзиночка обладала лучшей формоустойчивостью в сравнении с классическим образцом.

Песочные кексы с содержанием 8 % соевой муки также имели тонкостенную структуру, с равномерной пористостью, правильную форму, равномерный цвет, но невыраженный вкус.

Песочные кексы с содержанием 12 % соевой муки имели несколько утолщенную структуру, без хрупкости, вкус был недостаточно выраженный, форма и цвет изделия соответствовали нормам.

На основании органолептических показателей песочных кексов с различным содержанием соевой муки можно сделать вывод о том, что наилучшими характеристиками обладают образцы с 5 % заменой пшеничной муки на соевую муку. Об этом свидетельствуют и изученные структурно-механические свойства песочного теста.

Соевая мука не содержит глютен, однако в ней находится повышенное содержание белка, крахмала и пищевых волокон. Именно эти вещества придают песочному тесту упругость и эластичность, так как они связывают влагу, придавая готовым изделиям менее рассыпчатую структуру, что является важным показателем для придания правильной текстуры и формоустойчивости песочных корзиночек.

Для проведения экспериментов по определению реологических свойств песочного теста с добавлением соевой муки был использован лабораторный анализатор текстуры CT3 Brookfield. Он позволяет проводить фундаментальные тесты для исследования реологических свойств твердых веществ, к которым относится песочное тесто.

На графиках (рис. 1-4) наглядно показано влияние количества вносимой в рецептуру соевой муки на реологические свойства песочного теста.

Из рис. 1 и 2 видно, что у образца с 5 % добавлением соевой муки значение модуля упругости и модуля эластичности выше в 1,5 раза в сравнении с классическим образцом. Но подобное увеличение является положительным для данной категории песочных кексов, так как соевая мука в незначительном количестве придает дополнительную прочность песочной корзиночке кекса и увеличивает ее эластичность. В результате чего, начинка лучше удерживается внутри кексов.

Рис. 1. Величина модуля упругости и модуля эластичности песочного теста по классической технологии

Рис. 2. Величина модуля упругости и модуля эластичности песочного теста с 5 % заменой пшеничной муки на соевую муку

Из рис. 3 и 4 видно, что модуль упругости и модуль эластичности песочного полуфабриката после добавления 8 % и 12 % соевой муки увеличивается в 3,5-4 раза. Тесто становиться очень жестким и неэластичным. Оно трудно поддается дальнейшим технологическим операциям, в том числе формованию корзиночек кексов. Это также отрицательно влияет на органолептические показатели выпеченных изделий.

Рис. 3. Величина модуля упругости и модуля эластичности песочного теста с 8 % заменой пшеничной муки на соевую муку

Рис. 4. Величина модуля упругости и модуля эластичности песочного теста с 12 % заменой пшеничной муки на соевую муку

Заключение

На основании влияния различного количества добавляемой соевой муки на реологические свойства песочного теста было доказано, что оптимальным количеством замены пшеничной муки на соевую является 5 % замена. Данное количество соевой муки наилучшим образом влияет на структуру песочного теста, делая его более эластичным, а так же придает готовым выпеченным кексам необходимую формоустойчивость, влияющую на качество и их внешний вид.

Библиографическая ссылка

Кузнецова А.А., Чеснокова Н.Ю., Левочкина Л.В., Голубева Ю.И. ВЛИЯНИЕ СОЕВОЙ МУКИ НА СТРУКТУРНО-МЕХАНИЧЕСКИЕ СВОЙСТВА ПЕСОЧНОГО ТЕСТА // Международный журнал прикладных и фундаментальных исследований. – 2015. – № 12-7. – С. 1174-1177;
URL: https://applied-research.ru/ru/article/view?id=8109 (дата обращения: 17.09.2019). Предлагаем вашему вниманию журналы, издающиеся в издательстве «Академия Естествознания»