Внеклеточный матрикс. Внеклеточный матрикс — состав, структура и свойства

10.07.2017 Аврора

В материалах на нашем сайте мы часто упоминаем понятие «внеклеточный матрикс», но до сих пор не говорили подробно о его составе и структуре. В этой статье мы полностью расшифруем этот термин и покажем, какие вещества содержатся в матриксе, для чего они нужны, а главное — как сохранить здоровье межклеточной среды.

Итак, в организме человека клетки составляют примерно 20%, а остальные 80% — внеклеточный матрикс. Может возникнуть ощущение, что матрикс – это некая субстанция, в которой плавают клетки. На самом деле нигде ничего не плавает, все имеет строго упорядоченную структуру. Она может отличаться в различных тканях, но в большинстве случаев картина примерно одинакова.

Начнем со схематического изображения клеточной мембаны. Это двойной слой липидов, большинство из которых – фосфолипиды.

Интегрины, дистрогликаны и рецепторы домена дискоидина (DDR) – белки, пронизывающие мемрану клетки. Это клеточные рецепторы, взаимодействующие с внешней средой и передающие различные межклеточные сигналы.

А далее следует базальная мембрана, отделяющая клетку от соединительной ткани (матрикса). То есть клетки большинства тканей не контактируют с матриксом напрямую. Базальная мембрана формируется ламинином (светлая пластинка) и коллагеном 4 типа (темная пластинка). Связанные белком нидогеном (или энтактином), они образуют пространственную структуру и в первую очередь играют роль механической поддержки и защиты клеток. Фибронектин – гликопротеин, также отвечающий за структуру ткани, может формировать мультимерные цепочки. Участвует в адгезии, то есть сцеплении, клеток.

Также здесь находятся молекулы протеина перлекана. Он помогает поддерживать эндотелиальный барьер — физиологический барьер между кровеносной системой и центральной нервной системой. Он защищает нервную ткань от циркулирующих в крови микроорганизмов, токсинов, клеточных и гуморальных факторов иммунной системы, которые воспринимают нервную ткань как чужеродную. Протеогликан агрин играет ключевую роль в нейромышечном соединении, отвечая за доставку нервных импульсов к мышечным клеткам.

Двигаемся дальше, где начинается уже собственно межклеточный матрикс или соединительная ткань. Он пронизан волокнами коллагена. Это фибриллярный белок, составляющий основу соединительной ткани организма (сухожилия, кости, хрящи, дерма и т.д.) и обеспечивающий её прочность и эластичность.

Эластин формирует трехмерную сеть белковых волокон. Эта сеть не только важна для механической прочности ткани, но также обеспечивает контакты между клетками, формирует пути миграции клеток, вдоль которых они могут перемещаться (например, при эмбриональном развитии), изолирует разные клетки и ткани друг от друга (например, обеспечивает скольжение в суставах).

Аггрекан (протеогликановый хондроитинсульфат) – связывает воду, гиалуроновую кислоту и белки и формирует осмос, соответственно наделяя соединительную ткань, в том числе межпозвоночные диски и другие хрящи, устойчивостью к большим нагрузкам.

Гиалуроновая кислота участвует в регенерации ткани. Содержится во многих биологических жидкостях, в том числе синовиальной, отвечает за вязкость соединительной ткани. В связке с аггреканом формирует устойчивость к компрессии. Также гиалуроновая кислота - основной компонент биологической смазки и суставного хряща, в котором присутствует в виде оболочки каждой клетки (хондроцита).

Осталось упомянуть Коллаген 7 типа, который играет роль связующего структурного элемента. Например, в коже это якорные фибриллы в связке дермы (собственно кожи) и эпидермиса.

Безусловно, в состав матрикса также входит вода – от 25% в костной ткани до 90% в плазме крови.

Итак, что мы видим перед собой в итоге? – упорядоченную структуру, которая так или иначе встречается во всех тканях человека.

Например, на изображении слева — многослойный эпителий роговицы глаза. Состоит из плоских клеток верхнего слоя, среднего слоя, удлиненных клеток базального слоя, а затем идет базальная мембрана и соединительная ткань.
А справа эпителий трахеи – и здесь мы видим в целом то же самое. Только в верхнем слое находятся бокаловидные клетки. Далее следует базальная мембрана и матрикс.
А что за клетки мы наблюдаем в самой соединительной ткани? В большинстве тканей это фибробласты – клетки, вырабатывающие коллаген, эластин и протеогликаны. Также там могут находится жировые клетки, плазматические клетки, в хрящах – хондробласты и хондроциты и т.д. в зависимости от типа ткани.

Обратите внимание, что матрикс в обоих случаях имеет видимую структуру, хотя на снимках она не очень четкая. Упорядоченная структрура межклеточного матрикса — это признак молодости и здоровья. Но со временем воздействия внешних и внутренних факторов приводят к постепенному разрушению этой структуры – соответственно клетки перестают получать достаточное питание для их нормального роста и деления, ухудшается нервная проводимость, связь между клетками, их мобильность.

Межклеточный матрикс - это надмолекулярный комплекс, образованный сложной сетью связанных между собой макромолекул.

В организме межклеточный матрикс формирует такие высокоспециализированные структуры, как хрящ, сухожилия, базальные мембраны, а также (при вторичном отложении фосфата кальция) кости и зубы. Эти структуры различаются между собой как по молекулярному составу, так и по способам организации основных компонентов (белков и полисахаридов) в различных формах межклеточного матрикса.

Химический состав межклеточного матрикса

В состав межклеточного матрикса входят: 1). Коллагеновые иэластиновые волокна . Они придают ткани механическую прочность, препятствуя ее растяжению; 2). аморфное вещество в виде ГАГ и протеогликанов. Оно удерживает воду и минеральные вещества, препятствует сдавливанию ткани; 3). неколлагеновые структурные белки - фибронектин, ламинин, тенасцин, остеонектин и др. Кроме того, в межклеточном матриксе может присутствовать минеральный компонент - в костях и зубах: гидроксиапатит, фосфаты кальция, магния и т.д. Он придает механическую прочность костям, зубам, создает запас в организме кальция, магния, натрия, фосфора.

Функция межклеточного матрикса

Межклеточный матрикс выполняет в организме разнообразные функции:

· образует каркас органов и тканей;

· является универсальным «биологическим» клеем;

· участвует в регуляции водно-солевого обмена;

· образует высокоспециализированные структуры (кости, зубы, хрящи, сухожилия, базальные мембраны).

· окружая клетки, влияет на их прикрепление, развитие, пролиферацию, организацию и метаболизм.

КОЛЛАГЕН

Коллаген - фибриллярный белок, основной структурный компонент межклеточного матрикса. Коллаген обладает огромной прочностью (Коллаген прочнее стальной проволоки того же сечения, он может выдерживать нагрузку в 10000 раз большую собственного веса) и практически не растяжим. Это самый распространенный белок организма, на него приходиться от 25 до 33% общего количества белка в организме, т.е. 6% массы тела. Около 50% всех коллагеновых белков содержится в тканях скелета, около 40% - в коже и 10% - в строме внутренних органов.

Строение коллагена

Под коллагеном понимают два вещества: тропоколлаген и проколлаген.

Молекула тропоколлагена состоит из 3 α-цепей. Известно около 30 видов α-цепей, отличающихся между собой аминокислотным составом. Большинство α-цепей содержит около 1000АК. В тропоколлагене содержится 33% глицина, 25% пролина и 4-оксипролина, 11% аланина, есть гидроксилизин, мало гистидина, метионина и тирозина, нет цистеина и триптофана.

· Первичная структура α-цепей состоит из повторяющейся аминокислотной последовательности: Глицин-X-Y . В X положении чаще всего находиться пролин, а в Y – 4-оксипролин или 5-оксилизин.

· Пространственная структура α-цепи представлена левозакрученной спиралью в витке которой находиться 3 АК.

· 3 α-цепи скручиваются друг с другом в правозакрученную суперспираль тропоколлагена . Она стабилизируется водородными связями, радикалы АК направлены наружу.

Молекула проколлагена устроена также как и тропоколлагена, но на ее концах находятся С- и N-пропептиды, образующие глобулы. N-концевой пропептид состоит из 100АК, С-концевой пропептид – из 250АК. С- и N-Протеопептиды содержат цистеин, который через дисульфидные мостики образует глобулярную структуру.

Виды коллагена

Коллаген - полиморфный белок, в настоящее время известно 19 типов коллагена, которые отличаются друг от друга по первичной структуре пептидных цепей, функциям и локализации в организме. 95% всего коллагена в организме человека составляют коллагены I, II и III типов.

Типы Гены Ткани и органы
I COLIA1, COL1A2 Кожа, сухожилия, кости, роговица, плацента, артерии, печень, дентин
II COL2A1 Хрящи, межпозвоночные диски, стекловидное тело, роговица
III C0L3A1 Артерии, матка, кожа плода, строма паренхиматозных органов
IV COL4A1-COL4A6 Базальные мембраны
V COL5A1-COL5A3 Минорный компонент тканей, содержащих коллаген I и II типов (кожа, роговица, кости, хрящи, межпозвоночные диски, плацента)
VI COL6A1-COL6A3 Хрящи, кровеносные сосуды, связки, кожа, матка, лёгкие, почки
VII COL7A1 Амнион, кожа, пищевод, роговица, хорион
VIII COL8A1-COL8A2 Роговица, кровеносные сосуды, культуральная среда эндотелия
IX COL9A1-COL9A3
X COL10A1 Хрящи (гипертрофированные)
XI COLUA1-COL11A2 Ткани, содержащие коллаген II типа (хрящи, межпозвоночные диски, стекловидное тело)
XII COL12A1
XIII C0L13A1 Многие ткани
XIV COL14A1 Ткани, содержащие коллаген I типа (кожа, кости, сухожилия и др.)
XV C0L15A1 Многие ткани
XVI COL16A1 Многие ткани
XVII COL17A1 Гемидесмосомы кожи
XVIII COL18A1 Многие ткани, например печень, почки
XIX COL19A1 Клетки рабдомиосаркомы

Гены коллагена называются по типам коллагена и записываются арабскими цифрами, например СОL1 - ген коллагена 1 типа, COL2 - ген коллагена II типа и т.д. К этому символу приписываются буква А (обозначает α-цепь) и арабская цифра (обозначает вид α-цепи). Например, COL1A1 и COL1A2 кодируют, соответственно, α 1 , и α 2 -цепи коллагена I типа.

Высказанная точка зрения может быть дополнена положениями теории внеклеточного матрикса, разработанной в 80-х годах XX в. австрийскими учёными А. Пишингером и Х. Хайне на основании электронно-микроскопических исследований. Они пришли к выводу, что разветвлённая в межклеточном пространстве система соединительной ткани выполняет в организме многообразную (в том числе и информационную) роль.

В современной литературе данный феномен имеет несколько синонимов: внеклеточный матрикс, межуточное вещество, матрица, основная субстанция, пишингерово пространство.

Основная субстанция может быть образована собственно кожей (дермой), рыхлой соединительной тканью, типичной для подкожно-жировой клетчатки, сухожилиями и мышечно-фасциальными прослойками, внутриорганной стромой паренхиматозных органов, нейроглией, брюшиной и даже компактной костью. В сущности, внеклеточный матрикс является отдельным органом, но не локализованным, а диффузно распределенным по всему организму. Его можно представить как сеть, обеспечивающую связь и единство всех прочих анатомических структур.

С биохимической точки зрения межуточное вещество состоит из высокополимерных гликопротеиновых комплексов, образующих молекулярную решетку матрикса. Ячейки этой матрицы заполнены коллоидным раствором, консистенция которого может менять своё агрегатное состояние (гель – золь) в зависимости от деятельности нервных и эндокринных медиаторов, а также биологически активных веществ (гистамин, серотонин, кинины), выделяемых лейкоцитами, тучными или плазматическими клетками, особенностей электролитного состава и электрического заряда окружающих тканей и т.д.

Способность межуточного вещества трансформироваться в гели обусловлена глюкозаминогликанами и гиалуроновой кислотой, связывающих воду. По-видимому, подвижные клетки способны перемещаться во внеклеточном матриксе, продавливаясь сквозь этот гель.

Согласно Пишингеру активная соединительная ткань необходима для локализации общей информации. Полисахаридные структуры основного матрикса обладают выраженной способностью к конформационной изменчивости и в силу этого обладают пространственной памятью, являясь эффективными носителями информации. Так, например, 4 простых молекулы углеводов теоретически могут образовывать 35560 различных тетрасахаридов. Это позволяет восстанавливать индивидуальный гомеостаз даже при существенном отклонении системы от исходного равновесия.

Органоспецифические клетки не имеют непосредственных контактов с нервными проводниками и сосудистой сетью. Все их нервно-гуморальные связи опосредуются через окружающий их матрикс (пишингерово пространство). На поверхности клеток компоненты матрикса связываются с липидами и протеинами клеточной мембраны, а также с её рецепторами, являющимися важными компонентами передачи информации внутрь клетки.

5055 0

Тучные клетки загадочны

Это, скорее спецназ широкого профиля. У нее много названий: лаброцит (греч. labros огромный + гист. cytus клетка), мастоцит (нем. mastig откормленный, тучный + гист. cytus клетка), гепариноцит (клетка, выделяющая гепарин). Клетки эти загадочны и удивительны. Тучные клетки есть везде, где появляется хотя бы минимальная прослойка соединительной ткани. Они отличаются разнообразнейшим видом (полиморфизм). Пока неизвестно точно, из каких клеток-предшественников образуются тучные клетки. Больше данных за то, что это - моноциты крови.

Удивительно, но многие медики с учеными степенями совершенно не знают о существовании тучных клеток, их функциях. Особенно этим славятся эндокринологи, полагающие, что все управление организмом ведется из ограниченного набора эндокринных органов («факт варикозно расширенных вен никакого отношения к эндокринологии не имеет» - с форума РМС). Тучная клетка вырабатывает около сотни разнообразных гормонов и медиаторов (гиалуроновая кислота, гистамин, серотонин, гепарин и т.д.) и составляет 50% всех соединительнотканных клеток.

Специалисты по акупунктуре важную роль в кодировании информации, полученной точкой акупунктуры, отдают тучным клеткам. Полагают, что активация функциональной активности лаброцитов приводит к выбросу в околоклеточную жидкость физиологически активных веществ -медиаторов боли или воспаления: вещества Р, брадикинина, гистамина, серотонина и др., действующих на окружающие клетки и на рецепторы нервных окончаний, где полученная информация кодируется и передается дальше уже нервным путем.

Лаброциты наиболее часто локализуются около мелких сосудов (капилляров), под эпителием и вблизи желез кожи, слизистых и серозных оболочек, в капсуле и трабекулах паренхиматозных (почки, печень) органов, в лимфоидных органах.

В гранулах лаброцитов обнаружены гепарин, гистамин, серотонин, допамин, хондроитинсульфаты, гиалуроновая кислота, гликопротеиды, фосфолипиды, хемотаксические факторы и фактор активации тромбоцитов. В состав гранул лаброцитов входят ферменты - липаза, эстераза, триптаза (активирующая кининоген), ферменты цикла Кребса, анаэробного гликолиза и пентозного цикла.

Межклеточное вещество (матрикс) вездесуще

Межклеточное вещество (иногда называют матриксом) выполняет разнообразные функции. Оно обеспечивает контакты между клетками (посредник), образует механически прочные структуры, такие, как кости, хрящ, сухожилия и суставы (строитель), составляет основу фильтрующих мембран, например, в почках (основатель), изолирует клетки и ткани друг от друга, например, обеспечивает скольжение в суставах и движение клеток (помощник), формирует пути миграции клеток, вдоль которых они могут перемещаться, например, при эмбриональном развитии (проводник).

Таким образом, межклеточное вещество чрезвычайно разнообразно как по химическому составу, так и по выполняемым функциям. Так как внеклеточное соединительнотканное пространство образует с клеткой функциональное единство, клетка может реагировать на раздражение лишь в том случае, когда информация поступает к ней из межклеточного пространства. Динамическая структура этого пространства и принципы ее регуляции (система основной регуляции) определяет эффективность вне- и внутриклеточных каталитических процессов.

А они зависят от структуры основной субстанции (называемой также матриксом или внеклеточным матриксом). Матрикс представляет собой молекулярную решетку, состоящую из высокополимерных углеводов и протеинов (протеогликанов-гликозаминогликанов), структурных протеинов (коллагена, эластина) и связующих гликопротеинов (фибронектина). Протеогликановые/гликозамино-гликановые комплексы имеют отрицательный электрический заряд и способны связывать воду и участвовать в ионном обмене.

Заканчивающиеся в матриксе вегетативные нервные волокна обеспечивают подключение к ЦНС, капиллярное русло - к эндокринной системе.

Протеогликаны и гликоаминогликаны - властелины

Клеточные и волокнистые элементы соединительной ткани погружены в основное вещество, главными химическими компонентами которого являются белки и полисахариды. Последние в тканях не существуют в свободном виде. Они присоединены ковалентной связью к белкам и поэтому такие соединения называют протеогликанами (ПГ). Строение протеогликана напоминает ершик для мытья бутылок.


ГК - гиалуроновая кислота; СБ - скрепляющий белок; БС - белковый стержень протеогликановой единицы; ХС - цепи хондроитин-сульфата; КС - цепи кератан-сульфата.


В центре - длинная линейная молекула гиалуроновой кислоты. С помощью скрепляющего белка присоединены около 70-100 единиц протеогликанов (белковые стержни). На них находится хондроитин-сульфат и кератан-сульфат. Биосинтез протеогликанов в основном производится в фибробластах (хондробластах, остеобластах). Именно протеогликаны обеспечивают транспорт воды, солей, аминокислот и липидов в бессосудистых тканях - хряще, стенке сосуда, роговице глаза, клапанах сердца.


Схема основной регуляции. Взаимосвязи между капиллярами, лимфатическими сосудами, основной субстанцией, терминальными вегетативными аксонами, клетками соединительной ткани (тучными клетками, иммунокомпетентными клетками, фибробластами и т. п.) и клетками паренхимы органов. Эпителиальные и эндотелиальные клеточные комплексы расположены под базальной мембраной, сообщающейся с основной субстанцией. На поверхности всех клеток имеется соединяющийся с основной субстанцией слой, гликопротеиновая или липидная мембрана, здесь располагаются и комплексы гистосовместимости. Основная субстанция функционально связана через капиллярное русло с эндокринной системой, а через аксоны - с ЦНС. Фибробласт является центром обменных процессов


А.А. Алексеев, Н.В. Заворотинская

Внеклеточный матрикс (~25% массы тела) представляет собой "решетку" из высокополимерных сахаров. Он функционирует как транзитный участок и "молекулярное сито" между кровью и специализированными клетками ткани. Функционирование матрикса обеспечивает удаление продуктов обмена клеток и других токсинов.

Давайте проследим изменения в связанные с открытием интегральной роли внеклеточного матрикса.

В таблице 1957 г. понятия внеклеточного матрикса, не было, т.к. концепция Системы регуляции Пишингера была разработана чуть позже.

Рекевег был знаком с работами Пишингера, ссылался на них, и придавал большое значение роли состояния мезенхимы в развитии заболеваний и учитывал воздействие на нее в терапевтических целях. Сам же термин матрикс был введен в Таблицу шести фаз в начале 1990-х годов.

Обратите внимание на ОЧЕНЬ ВАЖНЫЙ МОМЕНТ - матрикс составляет около 25% массы тела человека (!). Это позволяет (условно) считать его отдельным «органом». Поэтому, зная функции матрикса, не учитывать его состояние и не корригировать его при лечении любых заболеваний просто НЕ ВОЗМОЖНО! Не делая этого, специалист не имеет права говорить о полноценной патогенетической терапии!

Иногда путают понятия «матрикс» и «межклеточное пространство». Матрикс - это решетка из высокополимерных сахаров - основное вещество . Внеклеточный матрикс - это зона трансмиссии - передачи информации (сигналов) от регуляторных систем организма к клетками. Нервы, капилляры, лимфатические сосуды - все они заканчиваются или начинаются во внеклеточном матриксе. Ни один из них не заканчивается и не берет свое начало в клетке. Взаимодействие различных систем (НС, ССС, иммунной, эндокринной) происходит посредством обмена нейротрансмиттерами, которые управляются внеклеточным матриксом. Клетка окружена внеклеточным матриксом, и качество ее функционирования зависит от чистоты внеклеточного матрикса и его трансмиссионных способностей.

Межклеточное пространство и матрикс еще называют транзитным участком или «молекулярным ситом», т.к. через него осуществляется транспорт питательных веществ и кислорода из крови к клеткам, а из клеток в кровь опять же через него поступают метаболиты, токсины и углекислый газ. Также через него из крови к рецепторам клеток движутся гормоны, а от нервных окончаний - медиаторы.

Более подробно о функциях мезенхимы и матрикса можно прочитать в статьях: Боллинг Д.: Пишингер: научное обоснование акупунктуры и гомотоксикологии // Биологическая терапия. - №4. - 1997. - С.10-11. Адельверер Н.: Матрикс, значение рН и окислительно-восстановительный потенциал // Биологическая Медицина.- №2.- 2003.- с.9-10

На рисунке выше представлена структура матрикса (молекулярной решетки). Внеклеточный матрикс представляет собой тонкую трехмерную решетку протеогликанов и гликозаминогликанов. Протеогликаны состоят из молекул гиалуроновой кислоты, на которых при помощи связующих белков (трисахаридов) закрепляется коровый (core) протеин. По горизонтали в виде древовидной структуры крепятся поперечные белки, которые являются носителями дисахаридных звеньев (гликозаминогликанов, например, хондроитин сульфат).

Высокополимерные сахара (хондроитин сульфат, кератан сульфат - изображены в виде иголочек) притягивают к себе молекулы воды, образуя гидратные оболочки. Гомотоксины «застревают» («набиваются») между иголочками (сахарами) и тоже образуют гидратные оболочки. В связи с этим матрикс набухает и переходит из жидкостного состояния (золя) в состояние геля (желеобразное).

Внимание! Это важно! «Загрязнение» матрикса (набухание и переход в гелеобразное состояние) затрудняет и нарушает транспорт веществ через матрикс, а также передачу регуляторных сигналов!

Различные состояния матрикса

Здоровье и качество жизни пациента находятся в прямой зависимости от чистоты межклеточного матрикса и своевременности передачи регуляторных сигналов.

В здоровом состоянии матрикс находится в состоянии золя, при этом его структура однородная и равномерная (при гистологическом исследовании).

Под действием же различных вредных факторов в матриксе происходит накопление («застревание») гомотоксинов, показатель рН изменяется в сторону закисления; высокополимерные сахара притягивают к себе молекулы воды, образуя гидратные оболочки. Гомотоксины «застряют» («набиваются») между иголочками и тоже образуют гидратные оболочки. В связи с этим матрикс набухает и переходит из состояния золя в гель. Его структура местами уплотняется и становится неоднородной (что видно при гистологическом исследовании). В результате этого происходит замедление метаболизма - затрудняется доступ к клетке питательных веществ и кислорода, а также обратное выведение метаболитов и углекислого газа.

Описанный процесс происходит в фазах до биологического барьера.

За биологическим барьером все сложнее, т.к. гомотоксины образуют химические связи с сахарами (т.е. происходит их полимеризация со структурами матрикса) и их просто так уже не вывести. Хронические заболевания являются следствием продолжительной неспособности организма должным образом справляться с токсинам во внеклеточном, а затем и во внутриклеточном матриксе.

В такой ситуации необходимо использовать препараты, обладающие деполимеризирующим эффектом, те которые могут разрывать эти связи (среди антигомотоксических препаратов (АГТП) такие препараты есть!). помогает эффективно бороться с данной ситуацией!

Дополнительная информация

При дальнейшем накоплении во внеклеточном матриксе и поступлении гомотоксинов внутрь клетки, поражаются органеллы клетки, в частности - митохондрии, что приводит к сдвигу гомеостаза клетки в сторону анаэробного гликолиза и кислотно-щелочного равновесия - в кислую сторону. Клетка начинает функционировать в условиях энергетического дефицита, связанного с переходом на гликолиз, митохондриями передается информация в ядро для синтеза митохондриальной РНК, с целью увеличения количества митохондрий. Практически нет возможности для прохождения этой информации без искажений, поэтому неспецифически активизируется клеточное деление и клетка переходит к бесконтрольному размножению, образуется злокачественная опухоль. Для клетки опухоли характерны процессы анаэробного гликолиза, в результате которого внутри клеток образуется избыток лактата, возникает ацидоз. С помощью активных механизмов кислота удаляется во внеклеточное пространство. В условиях внеклеточного ацидоза матрикс структурно перестраивается, он становится механически менее проницаемым для иммунокомпетентных клеток, к тому же в кислой среде их метаболизм и функциональная активность снижается.

Дополнительная информация из химии: Золь - коллоидная система с жидкой непрерывной фазой и твердой дисперсной фазой, представленной частицами диаметром 0,1 - 0,001ц. Гель - студенистое состояние вещества (Словарь по геологии нефти, 1952). Гели (от лат. gelo - застываю) - дисперсные системы с жидкой или газообразной дисперсионной средой, обладающие некоторыми свойствами твердых тел: способностью сохранять форму, прочностью, упругостью, пластичностью. Эти свойства геля обусловлены существованием у них структурной сетки (каркаса), образованной частицами дисперсной фазы, которые связаны между собой молекулярными силами различной природы.

МАТРИКС - "поле", на котором по пути к клетке сходятся все регуляторные сигналы

Важно помнить об интегральной роли матрикса - места, где «сходятся» все регуляторные сигналы иммунно-нейро-эндокринной системы. От их адекватного взаимодействия зависит благополучие всего организма.

Молекулярная решетка матрикса преодолевается всеми веществами, участвующими в метаболизме, то есть играет роль «транзитного участка». Так как в матриксе заканчиваются вегетативные нервные волокна, то по нервным путям он связан с центральной нервной системой (ЦНС). Также в матриксе начинаются лимфатические сосуды и сквозь матрикс проходят кровеносные сосуды (капилляры), поэтому посредством гормонов он соединен и с эндокринной системой (прежде всего, с гипофизом, щитовидной железой и надпочечниками). Как известно, ЦНС и эндокринная системы взаимодействуют друг с другом в стволе головного мозга (гипоталамусе). В матриксе также имеются иммунокомпетентные клетки.

В матриксе взаимодействуют все три основные системы регуляции организма - нервная, эндокринная и иммунная. Матрикс пронизывает внеклеточное пространство организма и выполняет функцию молекулярной решетки, окружающей и поддерживающий клетки, и играет основную роль, как интегральная часть энергетически открытой системы организма.